

NaturalPoint

OptiTrack API

Version: 1.83

For SDK Version 1.1.037

Date: 01/14/2010

NaturalPoint Proprietary

All data and information contained in or disclosed by this document is confidential and
proprietary information of NaturalPoint Corporation and all rights therein are expressly
reserved. By accepting this material the recipient agrees that this material and the information
contained therein is held in confidence and in trust and will not be used, copied, reproduced in
whole or in part, nor its contents revealed in any manner to others without the express written

 permission of NaturalPoint Corporation. Information in this document is preliminary and
subject to change and does not represent a commitment on the part of NaturalPoint
Corporation.

NaturalPoint Corporation

33872 SE Eastgate Circle

Corvallis OR 97339

Copyright 2004-2008 NaturalPoint Corporation. All rights reserved.

Printed in the US.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Architecture

Table of Contents

Table of Contents ...3

1 Architecture ...5
1.1 Overview...5
1.2 Component Model ..5
1.3 Interface Layout..5

2 Functionality ..7
2.1 npusb.sys ...7
2.2 cameradll.dll ...7
2.3 optitrack.dll ...7
2.4 smartnav.exe..7
2.5 trackir.exe...7

3 Design Considerations..8
3.1 Getting Started ...8
3.2 Single Dot Tracking ..10
3.3 Vector Tracking ..10
3.4 Connection Points ..11
3.5 Threading Issues..11
3.6 Smoothing ..11
3.7 Camera Commands ...11
3.8 Camera Frame Object Lifetime ..12
3.9 Object Coordinates...12
3.10 Color Structures ...12
3.11 VARIANT_BOOL versus BOOL ...13
3.12 Switch States..13

4 Interfaces ..14
4.1.1 INPCameraCollection..14

4.1.1.1 Properties...14
4.1.1.2 Methods ...15

4.1.2 INPCamera..16
4.1.2.1 Properties...16
4.1.2.2 Methods ...19

4.1.3 INPVector ..32
4.1.3.1 Properties...33
4.1.3.2 Methods ...35

4.1.4 INPVector2 ..36
4.1.4.1 Properties...37
4.1.4.2 Methods ...40

4.1.5 INPPoint ..40
4.1.5.1 Properties...44

4.1.6 INPSmoothing ...45
4.1.6.1 Properties...45
4.1.6.2 Methods ...47

4.1.7 INPCameraFrame ...47
4.1.7.1 Properties...47
4.1.7.2 Methods ...49

4.1.8 INPObject ..53
4.1.8.1 Properties...53

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Architecture

4.1.8.2 Methods ...55
4.1.9 INPAvi..56

4.1.9.1 Properties...56
4.1.9.2 Methods ...57

4.1.10 _INPCameraCollectionEvents...58
4.1.10.1 Methods ...58

4.1.11 _INPCameraEvents...59
4.1.11.1 Methods ...59

5 Sample Code ..60
5.1 VBScript..60
5.2 VB.NET...60
5.3 VC...60

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Architecture

1 Architecture

1.1 Overview

The OptiTrack API is written as a series of COM automation interfaces. This type of interface
was chosen due to the flexibility it provides. COM automation interfaces are supported by
nearly every language, including VBScript, JavaScript, Visual Basic and C/C++. Support also
exists for Python, Delphi and many others. Check your favorite language for more details.

1.2 Component Model

U
S

B

Figure 1

1.3 Interface Layout

Figure 2 below shows the interfaces in the OptiTrack API and their relationships. The main
interface is INPCameraCollection. This interface contains a list of all cameras attached to the
system. As cameras are added and removed to the system, notifications will be sent using the
_INPCameraCollectionEvents interface.

The INPCamera interface contains most of the functionality involving the device. Information
about the device can be queried, the device can be started and stopped, and data can be
collected.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Architecture

When a frame is captured from the device, a client will obtain an INPCameraFrame interface.
This interface is simply a collection of tracked objects in the frame. The ranking of the objects
in the frame can be changed by setting options on the INPCamera interface. Notifications for
events involving the camera are received through the _INPCameraEvents interface.

The INPSmoothing and INPVector interfaces are provided as helpers to manipulate the frame
data. The data from the camera can contain spatial noise, so some sort of smoothing needs to
be applied. The INPSmoothing interface is an example of a smoothing algorithm. Apply
smoothing to the single dot object positions or the vector calculations.

The INPVector interface will calculate the 6 degrees of freedom (6DOF) values when using
Vector Expansion. A Vector clip is required in order for the calculations to work correctly.
When calculating Vector positions, be sure to apply some sort of smoothing to the outputs.
Smoothing is not required for the frame inputs to the INPVector interface.

(Note : Vector will remain in the SDK, but support will no longer be provided for it)

Figure 2

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Functionality

2 Functionality

2.1 npusb.sys

Npusb.sys is the USB driver for the NaturalPoint camera. The driver resides in kernel space
and is loaded whenever a device is connected to the system. The driver handles
communication with the device from the rest of the NaturalPoint components. No interaction
with the device driver is required.

2.2 cameradll.dll

The camera DLL resides in user space and handles communication to the USB driver. This
library contains routines to handle camera specific data. No external interfaces are provided.

2.3 optitrack.dll

This DLL is the set of COM automation interfaces provided by OptiTrack.

2.4 smartnav.exe

SmartNAV is an application written by NaturalPoint that provides cursor control for the
ergonomics and assistive technologies market. It is an example of an application that can be
written using the camera system. See http://www.naturalpoint.com/smartnav for more
information.

2.5 trackir.exe

TrackIR is the gaming application written by NaturalPoint. TrackIR provides view control to
many game titles. See http://www.naturalpoint.com/trackir for more information.

NaturalPoint Proprietary

http://www.naturalpoint.com/smartnav
http://www.naturalpoint.com/trackir

OptiTrackAPI_1.1.037.doc Design Considerations

3 Design Considerations

3.1 Getting Started

Only a small amount of code needs to be written in order to communicate with the camera.
The following outlines the procedure for initializing the camera:

1. Create the INPCameraCollection object.

2. Call the Enum() method to enumerate the devices in the system.

3. Walk the list of cameras in the collection.

4. If a camera is detected, initialize the camera:

a. Call the Open() method on INPCamera.

b. Query any information about the device—hardware type, serial number, etc.
(optional)

c. Apply any options that are relevant to your application (optional).

d. Turn on any LEDs (optional).

e. Call the Start() method. This will start the collection of frame information from the
camera.

At this point, the camera should be initialized and collecting frame information. The main loop
of the application should either handle frame callbacks using the _INPCameraEvents interface
or poll for frames using the GetFrame() method of INPCamera.

When data processing is complete, call the Stop() method of INPCamera and then close the
device by calling Close().

The following code shows how to communicate with the camera using callbacks in VBScript.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Design Considerations

dim objNPCameras
dim objCamera

Sub SINK_DeviceArrival(objCamera)
 WScript.Echo "Device Arrival."
End Sub

Sub SINK_DeviceRemoval(objCamera)
 WScript.Echo "Device Removal."
End Sub

Sub CAMERA_FrameAvailable(objCamera)
 Set objFrame = objCamera.GetFrame(0)

 ‘ TODO: process the frame information here

 objFrame.Free()
End Sub

' create the main config object
set objNPCameras = WScript.CreateObject("OptiTrack.NPCameraCollection", "SINK_")

‘ enumerate the cameras
objNPCameras.Enum()
WScript.Echo "Num of cameras: " & objNPCameras.Count

for each objCamera in objNPCameras

 ' register callbacks
 WScript.ConnectObject objCamera, "CAMERA_"

 ' Open the camera
 objCamera.Open()

 ‘ start the camera
 objCamera.Start()

 ‘ process data until stopped
 WScript.Echo "hit OK to stop data."

 ' close the camera
 objCamera.Close()

 ' disconnect callbacks
 WScript.DisconnectObject objCamera

Next

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Design Considerations

3.2 Single Dot Tracking

The basic OptiTrack API provides functionality to help track a single object in the camera’s
view. Several factors go into determining which object is to be considered the tracked object.
These options are exposed through the SetOption method of the INPCamera interface.

There are 6 variables that go into determining the tracked object. They are: object size, object
ratio, proximity to other objects, static count (non-movement), distance from the center of the
imager, and whether or not the current object was the last tracked object.

Object size is the number of imager pixels in the object. Ratio is the ratio of the width to the
height of the object. The static count measures whether or not the object is moving. Most
often, static objects are not good candidates for being tracked. Distance from the center
measures how far an object is located from the center of the imager. The farther from the
center of the imager, the less likely it is to be considered as the preferred tracked object. The
last tracked object has more weight in the calculations based on the fact that the most recent
object is probably going to be the object tracked in the future.

All tracking variables have a minimum, maximum, ideal, weight and penalty if the value is
outside the minimum or maximum. Each of the 6 variables is scaled from 0 to 1.0 based on its
position within the minimum and maximum range. The scaled value is multiplied by its weight
and then the sum of all variables is calculated. The objects are then ranked based on their
weightings. The object with the highest weighting is ranked number 1.

Changing the options will affect the ranking of the objects returned in the INPCameraFrame
interface. The object with the highest ranking will be known as the tracked object. This is the
object applications should use to determine movement when only a single object is preferred.

The output from the camera can contain spatial noise. When using single dot tracking, be sure
to smooth the data using an appropriate algorithm. A sample smoothing algorithm is provided
in the INPSmoothing interface.

The dot tracking functionality provided by the OptiTrack API is entirely optional. The algorithms
provided in the API are the same set of rules that other NaturalPoint applications use. 3rd party
applications may want to take the camera object information and rank the objects manually if
the desired results are not obtained through the default tracking parameters.

3.3 Vector Tracking

(Vector will remain in the SDK, but support will no longer be provided for it)

Vector tracking is optional and can be used to determine the position and orientation of a users
head in 3D space. The single dot tracking rankings do not have any affect on the Vector
tracking algorithms. The INPVector interface will rank the objects it thinks are valid. This is
done by the position and size of the objects. When using Vector tracking, it is important keep
extra objects in the field of view at a minimum.

If for some reason the tracking of all three objects in the Vector clip is lost, call the Reset
method of INPVector to restart the calculations.

The Vector algorithms work best when the clip is placed directly in front of the camera, about 2-
3 feet away. See the TrackIR FAQ on www.naturalpoint.com for more help on ideal positions
when using Vector.

NaturalPoint Proprietary

http://www.naturalpoint.com/

OptiTrackAPI_1.1.037.doc Design Considerations

3.4 Connection Points

Standard COM connection points are used for callback notifications. Connection points were
chosen because they are compatible with most languages that communicate with COM
automation interfaces. See the COM documentation in the MSDN help for more information.
Specifically, search for IConnectionPoint and IConnectionPointContainer.

There is slightly more overhead involved with setting up connection points in C/C++, but
sample code is provided to assist in coding.

3.5 Threading Issues

The OptiTrack APIs are apartment threaded. Apartment threaded means that only one thread
can be used to call into the DLL at any given time. Any other threads that are used to call into
the DLL while another thread is executing in the DLL will be blocked until the first thread
completes.

This also affects how callbacks are implemented. Connection point callbacks must be done on
the same thread that created the object. This is accomplished by creating a hidden window
whenever an object that has connection points is created. The hidden window uses the
message queue of the calling thread. Callbacks are done by posting a message to the hidden
window and then calling the connection point callback interface.

The drawback to this mechanism is that the message queue for the thread that created the
object needs to be free to run if OptiTrack notifications are to be handled in the timely fashion.
For instance, if the main thread of a GUI application is used to create the OptiTrack camera
object, make sure that no blocking operations are run on that thread. If a blocking operation is
required, use a message loop to handle messages.

This issue only affects connection point callbacks. If camera frame information is gathered by
polling this INPCamera interface, this is not a concern.

3.6 Smoothing

The INPSmoothing interface assumes a correlation between the X and Y values. It is most
commonly used for smoothing and filtering the data in single dot tracking. The smoothing
algorithm can also be used when smoothing a single value (for instance when smoothing yaw
from the Vector calculations). In this case, use only the X value and set the Y value 0.

3.7 Camera Commands

Issuing a high volume of commands to the camera device can reduce the camera’s video
throughput performance. All commands that interact with the physical camera cause an
interrupt to occur on the device which slows data collection and USB transmission rates.
During normal operation, the device is busy handling the capture of tracking information.
Commands from the client interrupt data flow and can produce undesirable results if called too
frequently.

Limit the use of LED commands when capturing data. Turning on and off an LED periodically
to indicate status is fine, but flashing LEDs in not recommended. In addition, it is recommended
that the LED state be tracked internally to the user’s application with camera commands only
issued during state changes.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Design Considerations

3.8 Camera Frame Object Lifetime

Camera frame objects in the OptiTrack system are a limited resource. Be sure to call the
Free() method to release the INPCameraFrame interface as quickly as possible.

3.9 Object Coordinates

Object coordinates are measured from the upper left corner of the device when the device is in
its normal, upright position. Figure 3 shows the default configuration.

Figure 3

If transformations are applied, the dot positions will change slightly. Transformed coordinates
are relative to the device center. Transformations include camera orientation and mirroring the
X and Y axis. Transformations can be performed by calling the Transform method of the
INPObject interface. Figure 4 shows the new configuration.

(-177.5, 145)

(-177.5, -145)

(177.5, 145)

(177.5, -145)

Figure 4

3.10 Color Structures

Color structures in Visual Basic are handled differently that in Win32 API. The RGB macro is
used for most color specifications in the Win32 API. Visual Basic handles colors by using its
own Color object. The two are not directly compatible.

The OptiTrack API requires colors to be specified using the RGB macro. Two structures are
provided in the Visual Basic sample code to assist in the conversion. ARGBColor is the Visual
Basic color structure and NPColor can be used to represent color structures passed to the
OptiTrack API.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Design Considerations

3.11 VARIANT_BOOL versus BOOL

One thing to note for those developers using C/C++ to create applications: VARIANT_BOOLs
and BOOLs are not quite the same. -1 is defined as true for VARIANT_BOOLs. Depending on
how your code is written, this may or may not affect your application.

Several macros are provided to help ease the situation. VARIANT_TRUE and
VARIANT_FALSE should be used when comparing VARIANT_BOOLs. Also, the OptiTrack
API provides two macros (B2VB and VB2B) for converting to and from VARIANT_BOOLs.

3.12 Switch States

The state of external ability switches connected to SmartNAV cameras is available to the
software stack when each frame is captured. The SwitchState property of the
INPCameraFrame interface can be queried for the state of the switches.

By default, the OptiTrack API suppresses empty camera frames to reduce the data flow in the
system. Doing so also causes switch state information to be lost when no tracking objects are
visible. Set the NP_OPTION_SEND_EMPTY_FRAMES to true to have all frames sent to the
client.

NOTE: External switches are supported in the OptiTrack and TrackIR hardware.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4 Interfaces

4.1.1 INPCameraCollection

This is the main entry point for communicating with the cameras. This interface is a standard
COM enumeration interface containing a list of all available cameras in the system.

4.1.1.1 Properties

4.1.1.1.1 INPCameraCollection::get__NewEnum

This property returns a copy of the enumerator. The returned object will be an INPCamera
interface with the index pointing to the first object in the collection.

HRESULT get__NewEnum(LPUNKNOWN * ppunk);

Parameters

 ppunk

 [out, retval] Pointer to an IUnknown interface.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.1.1.2 INPCameraCollection::get_Count

Returns the number of objects in the collection.

HRESULT get_Count(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to LONG that receives the count.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.1.2 Methods

4.1.1.2.1 INPCameraCollection::Item

The Item method returns the corresponding item in the collection. In this case Item will return
an INPCamera interface.

HRESULT Item(LONG a_vlIndex, INPCamera ** ppCamera);

Parameters

 A_vlIndex

 [in] Index of the item to retrieve.

 ppCamera

 [out, retval] Pointer that receives an INPCamera interface.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.1.2.2 INPCameraCollection::Enum

The Enum method enumerates all cameras in the system. This method must be called before
calling any other function of the INPCameraCollection interface.

HRESULT Enum();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

4.1.1.2.3 INPCameraCollection::Synchronize

The Synchronize method synchronizes the exposure timing and Frame ID of multiple cameras.
The method only works with OptiTrack FLEX:C120 and V100 cameras, inter-camera
synchronization cables must be attached first in order for it to work successfully. When it is
called, all cameras in the system are stopped, a master is elected and the cameras are then
started.

Note : This call is deprecated for OptiTrack V100 cameras as of SDK version 1.1.033. If the
synchronization cables are connected, then the Frame IDs for V100 cameras will automatically
synchronize without software intervention once the cameras are started.

HRESULT Synchronize();

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

4.1.2 INPCamera

4.1.2.1 Properties

4.1.2.1.1 INPCamera::get_SerialNumber

Read-only. Serial number of the camera.

HRESULT get_SerialNumber(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a LONG that receives the serial number of the camera.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.2.1.2 INPCamera::get_Model

Read-only. Model of the camera. Valid values are:

Name Description

NP_HW_MODEL_OLDTRACKIR Old TrackIR 1.

NP_HW_MODEL_SMARTNAV SmartNAV

NP_HW_MODEL_TRACKIR TrackIR2 or TrackIR3.

NP_HW_MODEL_OPTITRACK OptiTrack.

NP_HW_MODEL_UNKNOWN Unknown hardware

HRESULT get_Model(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a LONG that receives the model.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.2.1.3 INPCamera::get_Revision

Read-only. Hardware revision of the camera. Revisions vary depending on the model of the
camera. The following table describes valid revision values:

Name Description

NP_HW_REVISION_OLDTRACKIR_LEGACY Old TrackIR / SmartNAV

NP_HW_REVISION_OLDTRACKIR_BASIC Old TrackIR / SmartNAV

NP_HW_REVISION_OLDTRACKIR_EG Old TrackIR / SmartNAV

NP_HW_REVISION_OLDTRACKIR_AT Old TrackIR / SmartNAV

NP_HW_REVISION_OLDTRACKIR_GX Old TrackIR / SmartNAV

NP_HW_REVISION_OLDTRACKIR_MAC Old TrackIR / SmartNAV

NP_HW_REVISION_SMARTNAV_BASIC SmartNAV

NP_HW_REVISION_SMARTNAV_EG SmartNAV

NP_HW_REVISION_SMARTNAV_AT SmartNAV

NP_HW_REVISION_SMARTNAV_MAC_BASIC SmartNAV

NP_HW_REVISION_SMARTNAV_MAC_AT SmartNAV

NP_HW_REVISION_TRACKIR_BASIC TrackIR

NP_HW_REVISION_TRACKIR_PRO TrackIR

NP_HW_REVISION_OPTITRACK_BASIC OptiTrack Basic

NP_HW_REVISION_OPTITRACK_FLEX OptiTrack Flex

NP_HW_REVISION_UNKNOWN Unknown

HRESULT get_Revision(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a LONG that receives the revision.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.2.1.4 INPCamera::get_Width

Returns the width of the imager in pixels.

HRESULT get_Width(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a LONG that receives the imager width.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.2.1.5 INPCamera::get_Height

Returns the height of the imager in pixels.

HRESULT get_Height(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a long that receives the height.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.2.1.6 INPCamera::get_FrameRate

Returns the frame rate of the imager in frames per second.

HRESULT get_FrameRate(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a long that receives the Frame Rate.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.2.2 Methods

4.1.2.2.1 INPCamera::Open

Opens a connection with the device. This method must be called before making any other calls
to the INPCamera interface.

HRESULT Open();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

NP_E_DEVICE_DISCONNECTED The device has removed from
the system.

E_POINTER Pointer is invalid.

4.1.2.2.2 INPCamera::Close

Closes the connection with the device.

HRESULT Close();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

4.1.2.2.3 INPCamera::Start

Starts video on the camera. Data frames will be available after start is called.

HRESULT Start();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

NP_E_DEVICE_DISCONNECTED The device has removed from
the system.

NP_E_DEVICE_NOT_SUPPORTED The connected device is an
older hardware type not
supported by this API.

4.1.2.2.4 INPCamera::Stop

Stops data flow from the camera.

HRESULT Stop();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

NP_E_DEVICE_NOT_SUPPORTED The connected device is an
older hardware type not
supported by this API.

4.1.2.2.5 INPCamera::SetLED

Sets the state of the state of the specified LED. LEDs can be turned on or off using this
method.

HRESULT SetLED(LONG lLED, VARIANT_BOOL fOn);

Parameters

 lLED

 [in] LED to be turned on or off. The LED must be specified by the NP_LED
enumeration. LEDs have different mappings depending on the hardware revision. The
following table outlines the differences.

TrackIR / SmartNAV / OptiTrack Basic

LED Meaning

NP_LED_ONE Illumination LEDs

NP_LED_TWO Green LED (status)

NP_LED_THREE Red LED

NP_LED_FOUR Blue LED

OptiTrack Flex

LED Meaning

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

NP_LED_ONE Illumination LEDs

NP_LED_TWO Left red LED (status)

NP_LED_THREE Right red LED

NP_LED_FOUR Not used

 fOn

 [in] The desired state of the LED. VARIANT_TRUE turns on the LED,
VARIANT_FALSE turns the LED off.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid LED number.

NP_E_DEVICE_DISCONNECTED The device has removed from
the system.

NP_E_DEVICE_NOT_SUPPORTED The connected device is an
older hardware type not
supported by this API.

4.1.2.2.6 INPCamera::SetVideo

Turns the stream of video from the camera On and Off, this allows the video to be paused
without shutting down the camera. The camera must be started before calling this method.
Calling INPCamera::Stop() forces the video stream off regardless of it’s current state.

 HRESULT SetVideo(VARIANT_BOOL fOn);

Parameters

 fOn

 [in] The desired state of the Video stream. VARIANT_TRUE turns the video
stream on, VARIANT_FALSE turns the video stream off.

Return Values

Value Meaning

S_OK Method succeeded.

NP_E_NOT_STARTED The camera was not started

NP_E_DEVICE_DISCONNECTED The device has removed from
the system.

NP_E_DEVICE_NOT_SUPPORTED The connected device is an
older hardware type not
supported by this API.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.2.2.7 INPCamera::GetFrame

This method returns the most recent frame from the camera.

HRESULT GetFrame(LONG lTimeout, INPCameraFrame ** ppFrame);

Parameters

 lTimeout

 [in] The amount of time in milliseconds to wait for a frame. If no frame has
arrived from the camera, the thread will block. Specify 0 in order for the thread to not block.
Specifying INFINITE will cause the thread to wait indefinitely. Threads that are blocked will be
signaled when the camera is stopped.

 ppFrame

 [out, retval] Pointer to an INPCameraFrame interface.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER ppFrame is NULL.

NP_E_DEVICE_DISCONNECTED The device has removed
from the system.

NP_E_DEVICE_NOT_SUPPORTED The connected device is
an older hardware type
not supported by this API.

HRESULT_FROM_WIN32(ERROR_TIMEOUT) A timeout occurred
waiting for a frame from
the camera.

4.1.2.2.8 INPCamera::DrawFrame

This method draws the camera image to the specified window handle.

HRESULT DrawFrame(INPCameraFrame * pFrame, LONG hwnd);

Parameters

 pFrame

 [in] Specifies the camera frame to draw. Camera frames can be obtained by
calling the GetFrame method of INPCamera.

 hwnd

 [in] Window handle of the window in which the image is drawn. The size of the
image can be changed by setting the NP_OPTION_DRAW_SCALE option.

Return Values

Value Meaning

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

S_OK Method succeeded.

E_INVALIDARG Invalid hwnd.

NP_E_DEVICE_DISCONNECTED The device has removed
from the system.

NP_E_DEVICE_NOT_SUPPORTED The connected device is
an older hardware type
not supported by this API.

4.1.2.2.9 INPCamera::ResetTrackedObject

This method resets the single dot tracking engine. The currently tracked object will have no
weighting advantage against other objects.

HRESULT ResetTrackedObject();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

NP_E_DEVICE_DISCONNECTED The device has removed
from the system.

NP_E_DEVICE_NOT_SUPPORTED The connected device is an
older hardware type not
supported by this API.

4.1.2.2.10 INPCamera::GetOption

This method returns the value of the specified camera option.

HRESULT GetOption(LONG lOption, VARIANT * pVal);

Parameters

 lOption

 [in] Specifies the option to set. Options are defined by the NP_OPTION
enumeration.

 pVal

 [out, retval] Returns the value of the specified option. See the table below for a
mapping of option values to VARIANT types.

Option Type Meaning

NP_OPTION_STATUS_GREEN_ON_TRACKING VARIANT_BOOL By default the OptiTrack API turns the status
LED on and off when an object is being

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

tracked. If this behavior is not desired, set
this options to VARIANT_FALSE.

NP_OPTION_TRACKED_OBJECT_COLOR VT_I4 When the DrawFrame method is called, the
currently tracked object is draw using this
color. The default value is green. Use the
RGB macro to specify the color.

NP_OPTION_UNTRACKED_OBJECTS_COLOR VT_I4 When the DrawFrame method is called,
objects that are not tracked are drawn using
this color. The default value is red. Use the
RGB macro to specify the color.

NP_OPTION_OBJECT_COLOR_OPTION VT_I4 The object color option specifies how the
various objects are drawn when the
DrawFrame method is called. Specify
options using the
NP_OBJECT_COLOR_OPTION
enumeration.

NP_OPTION_DRAW_SCALE VT_R8 The draw scale option is a multiplier applied
to the camera image when DrawFrame is
called. Value values are from 0.1 to 5.0.

NP_OPTION_THRESHOLD VT_I4 Scene light filtering can be accomplished by
changing the video threshold level. Lower
values for the threshold allow objects of a
lower light intensity to be captured. Higher
values will filter out objects of a lower light
intensity. Valid values are from
NP_THRESHOLD_MIN to
NP_THRESHOLD_MAX. Threshold values
are not persisted in the device and are write-
only. When the API starts or a device is
inserted, the threshold is assumed to be the
device’s default value.

NP_OPTION_OBJECT_MASS_WEIGHT VT_R8 Weight of the object mass in determining the
tracked object. Default value: 1.0

NP_OPTION_OBJECT_RATIO_WEIGHT VT_R8 Weight of the object ratio in determining the
tracked object. Default value: 1.0

NP_OPTION_PROXIMITY_WEIGHT VT_R8 Weight of the object’s proximity to other
objects in determining the tracked object.
Default value: 1.0

NP_OPTION_STATIC_COUNT_WEIGHT VT_R8 Weight of the object’s non-movement in
determining the tracked object. Default value:
1.0

NP_OPTION_SCREEN_CENTER_WEIGHT VT_R8 Weight of the object’s proximity to the center
of the imager in determining the tracked
object. Default value: 1.0

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

NP_OPTION_LAST_OBJECT_TRACKED_WEIGHT VT_R8 Weight of the last tracked object in
determining the tracked object. Default value:
2.0

NP_OPTION_OBJECT_MASS_MIN VT_R8 Minimum number of pixels an object should
have to be considered a tracked object.
Default value: 3

NP_OPTION_OBJECT_MASS_MAX VT_R8 Maximum number of pixels an object can
have and still be considered a tracked object.
Default value: 200

NP_OPTION_OBJECT_MASS_IDEAL VT_R8 Ideal number of pixels an object should have
to be considered the tracked object. Default
value: 100

NP_OPTION_OBJECT_MASS_OUT_OF_RANGE VT_R8 Score to assign the object mass if the value
is outside the range of MIN and MAX. Default
value: 0

NP_OPTION_OBJECT_RATIO_MIN VT_R8 Minimum object ratio to be considered a
tracked object. Ratio is Width / Height.
Default value: 0.25

NP_OPTION_OBJECT_RATIO_MAX VT_R8 Maximum object ratio to be considered a
tracked object. . Ratio is Width / Height.
Default value: 4.0

NP_OPTION_OBJECT_RATIO_IDEAL VT_R8 Ideal object ratio to be considered a tracked
object. . Ratio is Width / Height. Default
value: 1.0

NP_OPTION_OBJECT_RATIO_OUT_OF_RANGE VT_R8 Score to assign the ratio if the value is
outside the range of MIN and MAX. Default
value: 0

NP_OPTION_PROXIMITY_MIN VT_R8 Minimum distance from other objects to be
considered the tracked object. Default value:
3

NP_OPTION_PROXIMITY_MAX VT_R8 Maximum distance from other objects to be
considered the tracked object. Default value:
300

NP_OPTION_PROXIMITY_IDEAL VT_R8 Ideal distance from other objects to be
considered the tracked object. Default value:
20

NP_OPTION_PROXIMITY_OUT_OF_RANGE VT_R8 Score to assign the proximity if the value is
outside the range of MIN and MAX. Default
value: 0

NP_OPTION_STATIC_COUNT_MIN VT_R8 Minimum number of frames the object
doesn’t move to be considered the tracked
object. Default value: 0

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

NP_OPTION_STATIC_COUNT_MAX VT_R8 Maximum number of frames the object
doesn’t move to not be considered the
tracked object. Default value: 200

NP_OPTION_STATIC_COUNT_IDEAL VT_R8 Ideal number of frames the object doesn’t
move to be considered the tracked object.
Default value: 0

NP_OPTION_STATIC_COUNT_OUT_OF_RANGE VT_R8 Score to assign the static count if the value is
outside the range of MIN and MAX. Default
value: 0

NP_OPTION_SCREEN_CENTER_MIN VT_R8 Minimum distance from center of imager to
be considered the tracked object. Default
value: 0

NP_OPTION_SCREEN_CENTER_MAX VT_R8 Maximum distance from center of imager to
be considered the tracked object. Default
value: 256

NP_OPTION_SCREEN_CENTER_IDEAL VT_R8 Ideal distance from center of imager to be
considered the tracked object. Default value:
0

NP_OPTION_SCREEN_CENTER_OUT_OF_RANGE VT_R8 Score to assign the screen center if the value
is outside the range of MIN and MAX. Default
value: 0

NP_OPTION_LAST_OBJECT_MIN VT_R8 Minimum number of frames to consider an
object the last tracked object. Default value: 0

NP_OPTION_LAST_OBJECT_MAX VT_R8 Maximum number of frames to consider an
object the last tracked object. Default value:
20

NP_OPTION_LAST_OBJECT_IDEAL VT_R8 Ideal number of frames to consider an object
the last tracked object. Default value: 0

NP_OPTION_LAST_OBJECT_OUT_OF_RANGE VT_R8 Score to assign the last object if the value is
outside the range of MIN and MAX. Default
value: 0

NP_OPTION_STATUS_LED_ON_START VARIANT_BOOL By default, the OptiTrack API will turn on the
status LED when the Start method is called.
If this behavior is not desired, set this option
to VARIANT_FALSE before calling the Start
method.

NP_OPTION_ILLUMINATION_LEDS_ON_START VARIANT_BOOL By default, the OptiTrack API will turn on the
illumination LED when the Start method is
called. If this behavior is not desired, set this
option to VARIANT_FALSE before calling the
Start method.

NP_OPTION_CAMERA_ROTATION VT_I4 The camera may be mounted in an

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

orientation other than the normal, upright
position. If the camera is turned on its side or
upside down, set this option. Use the
NP_CAMERA_ROTATION enumeration to
specify the camera rotation. To apply these
settings, the INPObject::Transform method
must be called per object which you wish to
transform.

NP_OPTION_MIRROR_X VARIANT_BOOL At times, it is desirable to reverse the motion
in the X plane. Set this option to
VARIANT_TRUE to mirror movement in the X
plane. To apply these settings, the
INPObject::Transform method must be called
per object which you wish to transform.

NP_OPTION_MIRROR_Y VARIANT_BOOL At times, it is desirable to reverse the motion
in the Y plane. Set this option to
VARIANT_TRUE to mirror movement in the Y
plane. To apply these settings, the
INPObject::Transform method must be called
per object which you wish to transform.

NP_OPTION_SEND_EMPTY_FRAMES VARIANT_BOOL By default, the OptiTrack API will filter
camera frames that have no data in them. To
have the API send all camera frames, set this
option to VARIANT_TRUE.

NP_OPTION_CAMERA_ID VT_I4 Assigns an ID number to a camera, the
camera will stamp this ID onto the frames
that it sends to the PC.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_FRAME_RATE VT_I4 Adjusts the cameras frame rate. Not all
percentage values are available, the closest
matching value will automatically be used
when an unavailable value is chosen. Using a
smaller percentage will slow down the frame
rate, this causes the camera to expose longer
resulting in brighter images. Range is from 3
to 100 (percent of the maximum frame rate).
Default value is 100.

Valid settings for C120 cameras : 3, 6, 10,
13, 16, 20, 33, 40,50, 66, 100

Valid settings for V100 cameras : 25, 50, 100

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_EXPOSURE VT_I4 Adjusts the cameras electronic exposure
control, allowing for brighter or darker
images.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

C120 cameras : Range is from 0 to 399
(smaller values result in darker images).
Default value is 150.

V100 cameras : Range is from 0 to 479
(smaller values result in darker images).
Default value is 55.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_VIDEO_TYPE VT_I4 Selects the type of video data sent by the
camera. Values : 0 = processed video with
final objects built on the PC, 1 = raw
greyscale video, 2 = processed video with
final objects built in the camera (V100
cameras only). Default value is 0 (Processed
with objects built on the PC)

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_INTENSITY VT_I4 Controls the intensity (brightness) of the IR
illumination LEDs on the camera. Range is
from 1 to 12 (smaller values result in less
emitted IR illumination). Default value is 12
(maximum illumination power).

V100 cameras only : Strobe illumination
mode is enabled by using a value of 15. This
mode activates the IR LEDs at full power
during a brief period at the start of the frame.
For best results a short exposure time (less
than 100) is recommended when using
strobe mode.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_FRAME_DECIMATION VT_I4 Controls the cameras auto-frame discarding
(decimation) feature, this allows the camera
to expose at fast shutter speeds while
delivering a reduced number of frames (every
Nth) to the PC. Range is from 0 to 5 (larger
values result in more auto-discarded frames).
Default value is 0 (no frames discarded).
0=drop no frames, 1=send every other,
2=send every forth, 3=send every eighth,
4=send every sixteenth, 4=send every thirty-
secondth

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_MINIMUM_SEGMENT_LENGTH VT_I4 Sets the minimum horizontal segment width
for a thresholded slice of an object that the

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

camera will accept, useful for filtering out
small image noise. Segments which are
shorter than the minimum length will get
discarded. Range is from 0 to 1023 (in ½
pixel increments). Default value is 0 (allow all
detected pixels through).

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_MAXIMUM_SEGMENT_LENGTH VT_I4 Sets the maximum horizontal segment width
for a thresholded slice of an object that the
camera will accept, useful for filtering out
large image noise. Segments which are
larger than the maximum length will get
discarded. Range is from 0 to 1023 (in ½
pixel increments). Default value is 1023
(allow all detected pixels through).

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_WINDOW_EXTENTS_X VT_I4 Sets the left edge of the clipping window for
the cameras image. Range is from 74 to 427.
Default value is 74.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_WINDOW_EXTENTS_X_END VT_I4 Sets the right edge of the clipping window for
the cameras image. Range is from 74 to 427.
Default value is 427.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_WINDOW_EXTENTS_Y VT_I4 Sets the top edge of the clipping window for
the cameras image. Range is from 11 to 299.
Default value is 11. The resulting total vertical
height of the image must a multiple of 4 in
order for video to work.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_WINDOW_EXTENTS_Y_END VT_I4 Sets the bottom edge of the clipping window
for the cameras image. Range is from 11 to
299. Default value is 299.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_RESET_FRAME_COUNT N/A Resets the frame ID counter (incremented
once per frame) in the camera to 0. Write
only. Also see INPCameraFrame::get_Id()

This feature is only supported by the

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_NUMERIC_DISPLAY_ON VT_I4 Turns on the Cameras Numeric LED and
displays a number. Range 0-99.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_NUMERIC_DISPLAY_OFF N/A Turns off the Cameras Numeric LED.

This feature is only supported by the
OptiTrack FLEX:C120 and V100 cameras.

NP_OPTION_SEND_FRAME_MASK VT_I4 Extended frame delivery options, this controls
whether Invalid (corrupt) and/or Empty (no
objects detected) frames trigger callback
notification. Default value is 0.

The value passed is a bitwise set of flags, the
following flags may be used :

● Enable callbacks for Invalid (corrupt)
frames (note : frames will not be processed) :

NP_FRAME_SENDINVALID (0x02)

● Enable callbacks for Empty (no objects
detected) frames :

NP_FRAME_SENDEMPTY (0x01)

NP_OPTION_TEXT_OVERLAY_OPTION VT_I4 Controls whether useful information about the
current frame will be overlaid on the frame
image when it gets rendered. Default value is
0.

The value passed is a bitwise set of flags, the
following flags may be used

● Enable overlay information about the video
mode and frame ID :

NP_TEXT_OVERLAY_HEADER (0x01)

● Enable overlay information about the
objects detected in the frame :

NP_TEXT_OVERLAY_OBJECT (0x02)

● Enable overlay information which increases
the visibility of objects detected in the frame :

NP_TEXT_OVERLAY_OBJECT_HIGHLIGHT
(0x04)

NP_OPTION_SCORING_ENABLED VARIANT_BOOL Default is TRUE

Allows the built-in object scoring and ranking
algorithms to be disabled. Disabling scoring
can significantly reduce the system
processing load when the camera is tracking

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

large numbers of markers. To have the API
disable scoring, set this option to
VARIANT_FALSE.

NP_OPTION_GRAYSCALE_DECIMATION VT_I4 Controls the cameras grayscale image down-
sampling (resizing) feature. This feature can
be enabled when there is not enough USB
bandwidth to transfer the entire grayscale
frame.

Default value is 0 (no down-sampling
640x480). 4=1/4 size (160x120), 2=1/2
size(320x240)

This feature is only supported by the
OptiTrack V100/V120 based cameras.

NP_OPTION_OBJECT_CAP VT_I4 Controls the maximum number of objects
detected in a frame. Lowering the number of
objects returned in can be used to increase
performance. Default is 500

NP_OPTION_SET_IR_FITER VARIANT_BOOL Controls the on-camera Filter Switcher to
select between the IR light pass filter and the
Visible light pass filter.

A value of TRUE selects the IR light pass
filter, and value of FALSE selects the Visible
light pass filter.

This feature is only supported for cameras
with the FilterSwitcher (FS) option installed.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid hwnd.

NP_E_DEVICE_DISCONNECTED The device has removed
from the system.

NP_E_DEVICE_NOT_SUPPORTED The connected device is an
older hardware type not
supported by this API.

4.1.2.2.11 INPCamera::SetOption

This method sets the value of the specified camera option. For a list of options, see the
GetOption method.

HRESULT SetOption(LONG lOption, VARIANT Val);

Parameters

 lOption

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

 [in] Specifies the option to set. Options are defined by the NP_OPTION
enumeration.

 Val

 [in] VARIANT that contains the value of the option. The variant type varies
depending on the option.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid option value.

NP_E_DEVICE_DISCONNECTED The device has removed
from the system.

NP_E_DEVICE_NOT_SUPPORTED The connected device is
an older hardware type
not supported by this API.

4.1.2.2.12 INPCamera::GetFrameImage

This method renders an image of the specified frame into a user-provided buffer.

HRESULT GetFrameImage(INPCameraFrame *pFrame, INT PixelWidth, INT PixelHeight,
INT ByteSpan, INT BitsPerPixel, BYTE* Buffer);

Parameters

 pFrame

 [in] Specifies the camera frame to draw. Camera frames can be obtained by
calling the GetFrame method of INPCamera.

 PixelWidth

 [in] Specifies the width in pixels of the image to be drawn.

 PixelHeight

 [in] Specifies the height in pixels of the image to be drawn.

 ByteSpan

 [in] Specifies the width of a horizontal line of the image in bytes. (If this value is
set to zero, it will be auto-calculated based on the BitsPerPixel value).

 BitsPerPixel

 [in] Specifies the colordepth of the image in bits per pixel.

Value Meaning

8 Eight Bits Per Pixel.
Display using each 8-bit
value as luminosity.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

16 Sixteen Bits Per Pixel.
Format: RGB565

24 Twenty Four Bits Per
Pixel. Format: RGB

32 Thirty Two Bits Per Pixel.
Format: RGBA

 Buffer

 [in] Specifies the buffer into which the frame should be drawn. In order to prevent
buffer overruns and memory corruption, the buffer should be of size (PixelHeight x ByteSpan)
or (PixelWidth x PixelHeight x (BitsPerPixel / 8))

Return Values

Value Meaning

S_OK Method succeeded.

4.1.3 INPVector

(Vector will remain in the SDK, but support will no longer be provided for it)

4.1.3.1 Properties

4.1.3.1.1 INPVector::get_Yaw

Returns the amount of yaw calculated from the previous frame.

HRESULT get_Yaw(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the yaw.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.3.1.2 INPVector::get_Pitch

Returns the amount of pitch calculated from the previous frame.

HRESULT get_Pitch(VARIANT * pVal);

Parameters

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

 pVal

 [out, retval] Pointer to VARIANT that receives the pitch.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.3.1.3 INPVector::get_Roll

Returns the amount of roll calculated from the previous frame.

HRESULT get_Roll(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the roll.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.3.1.4 INPVector::get_X

Returns the X position calculated from the previous frame.

HRESULT get_Yaw(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the X position.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.3.1.5 INPVector::get_Y

Returns the Y position calculated from the previous frame.

HRESULT get_Yaw(VARIANT * pVal);

Parameters

 pVal

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

 [out, retval] Pointer to VARIANT that receives the y position.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.3.1.6 INPVector::get_Z

Returns the Z position calculated from the previous frame.

HRESULT get_Z(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the Z position.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.3.2 Methods

4.1.3.2.1 INPVector::Update

Call the update method to calculate the current vector positions based on the given camera
frame. If the call to Update is successful, the properties of the INPVector interface will contain
the new values.

HRESULT Update(INPCamera * pCamera, INPCameraFrame * pFrame);

Parameters

 pCamera

 [in] Pointer to the camera that the frame originated.

 pFrame

 [in] Pointer to the frame used to calculate the values.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.3.2.2 INPVector::Reset

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

The reset method resets the Vector calculations to their initial state.

HRESULT Reset();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

4.1.4 INPVector2

(Vector will remain in the SDK, but support will no longer be provided for it)

The INPVector2 interface builds upon the functionality provided in INPVector. INPVector2
belongs to INPVector, all of the methods from INPVector are supported in addition to the new
functionality.

INPVector2 provides the ability to change the configuration of the Vector clip. The custom
vector clip must be a triangle with two points lower than the third point. The upper point should
also be offset from the two lower points. This interface allows for larger or smaller triangles to
be created, not custom shapes. There are 4 values of interest when changing the
configuration. They are dist01, dist02, dist12 and distol. The following figure shows the layout
of the Vector clip.

Figure 5 - Vector Layout

dist01 – The distance in mm from the center of P0 to P1

dist02 – The distance in mm from the center of P0 to P1

dist12 – The distance in mm from the center of P1 to P2

distol – The distance of the perpendicular of P1 to P2 to P0 in mm measured when looking
down at the clip

For optimal performance, dist01 and dist02 should be equal.

The following figure shows another view of the measurements.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

Figure 6 - Top down view of Vector clip

4.1.4.1 Properties

4.1.4.1.1 INPVector2::get_dist01

Returns the distance in mm between P0 and P1 of the vector clip.

HRESULT get_dist01(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.4.1.2 INPVector2::put_dist01

Sets distance in mm between P0 and P1 of the vector clip.

HRESULT put_dist01(VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

E_INVALIDARG Invalid value.

4.1.4.1.3 INPVector2::get_dist02

Returns the distance in mm between P0 and P2 of the vector clip.

HRESULT get_dist02(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.4.1.4 INPVector2::put_dist02

Sets distance in mm between P0 and P2 of the vector clip.

HRESULT put_dist02(VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid value.

4.1.4.1.5 INPVector2::get_dist12

Returns the distance in mm between P1 and P2 of the vector clip.

HRESULT get_dist12(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.4.1.6 INPVector2::put_dist12

Sets distance in mm between P1 and P2 of the vector clip.

HRESULT put_dist12(VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid value.

4.1.4.1.7 INPVector2::get_distol

Returns the distance in mm of the perpendicular to P1 and P2 from P0 of the vector clip.

HRESULT get_distol(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.4.1.8 INPVector2::put_distol

Note : This call is has been deprecated. distol gets calculated automatically using the
other distance parameters.

Sets the distance in mm of the perpendicular to P1 and P2 from P0 of the vector clip.

HRESULT put_distol(VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid value.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.4.1.9 INPVector2::get_Tracking

Returns the status of the last update. If true, the last frame given to the vector engine
contained three valid points.

HRESULT get_Tracking(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.4.2 Methods

4.1.4.2.1 INPVector2::GetPoint

GetPoint returns the 3D location of one of the points of the vector clip. Call this method after
calling the Update method with a camera frame. Check the tracking status before calling this
method to ensure the data is valid.

HRESULT GetPoint(int nPoint, INPPoint ** ppPoint);

Parameters

 nPoint

 [in] The index of the point to query. Valid values are from 0 to 2.

 ppPoint

[out, retval] Pointer to the INPPoint interface that receives the positional
information.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.5 INPVector3

(Vector will remain in the SDK, but support will no longer be provided for it)

The INPVector3 provides additional functionality beyond the INPVector2 interface. INPVector3
belongs to INPVector, all of the methods from INPVector and INPVector2 are supported in
addition to the new functionality.

INPVector3 provides the ability to change characteristics of the camera used in the Vector
calculation, most importantly the focal length which is useful with non-stock lenses.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.5.1.1 INPVector3:: get_imagerPixelWidth

Returns the width of the imager in pixels.

HRESULT get_imagerPixelWidth (VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.5.1.2 INPVector3:: put_imagerPixelWidth

Sets the width of the imager in pixels.

HRESULT put_imagerPixelWidth (VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid value.

4.1.5.1.3 INPVector3:: get_imagerPixelHeight

Returns the height of the imager in pixels.

HRESULT get_imagerPixelHeight (VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.5.1.4 INPVector3:: put_imagerPixelHeight

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

Sets the height of the imager in pixels.

HRESULT put_imagerPixelHeight (VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid value.

4.1.5.1.5 INPVector3:: get_imagerMMWidth

Returns the width of the imager in millimeters.

HRESULT get_imagerMMWidth (VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.5.1.6 INPVector3:: put_imagerMMWidth

Sets the width of the imager in millimeters.

HRESULT put_imagerMMWidth (VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid value.

4.1.5.1.7 INPVector3:: get_imagerMMHeight

Returns the height of the imager in millimeters.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

HRESULT get_imagerMMHeight (VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.5.1.8 INPVector3:: put_imagerMMHeight

Sets the height of the imager in millimeters.

HRESULT put_imagerMMHeight (VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid value.

4.1.5.1.9 INPVector3:: get_imagerMMFocalLength

Returns the focal length of the lens used with the imager in millimeters.

TrackIR3/SmartNAV3/OptiTrack FLEX:3 stock lens = 3.7mm

TrackIR4 stock lens = 2.45mm

OptiTrack FLEX:C120 stock lens= 2.6mm

HRESULT get_imagerMMFocalLength (VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the value of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.5.1.10 INPVector3:: put_imagerMMFocalLength

Sets the focal length of the lens used with the imager in millimeters.

HRESULT put_imagerMMFocalLength (VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the distance. Variant should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid value.

4.1.6 INPPoint

The INPPoint interface is a wrapper for a 3D location of a point. It is used by any interface that
needs to return the position of a 3D point.

4.1.6.1 Properties

4.1.6.1.1 INPPoint::get_X

Returns the X axis position of the point.

HRESULT get_X(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the position. Returned VARIANT
will be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.6.1.2 INPPoint::get_Y

Returns the Y axis position of the point.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

HRESULT get_Y(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the position. Returned VARIANT
will be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.6.1.3 INPPoint::get_Z

Returns the Z axis position of the point.

HRESULT get_Z(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the position. Returned VARIANT
will be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.7 INPSmoothing

4.1.7.1 Properties

4.1.7.1.1 INPSmoothing::get_Amount

Returns the amount of smoothing applied to the data.

HRESULT get_Smoothing(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the smoothing amount. Returned
VARIANT will be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

E_POINTER Pointer is invalid.

4.1.7.1.2 INPSmoothing::put_Amount

Sets the amount of smoothing applied to the data. Valid values are from
NP_SMOOTHING_MIN to NP_SMOOTHING_MAX.

HRESULT put_Smoothing(VARIANT Val);

Parameters

 Val

 [in] VARIANT that specifies the smoothing amount. Variant should be of type
VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_INVALIDARG Invalid amount.

4.1.7.1.3 INPSmoothing::get_X

Returns the smoothed X value.

HRESULT get_X(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the smoothed X value. Returned
VARIANT will be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.7.1.4 INPSmoothing::get_Y

Returns the smoothed Y value.

HRESULT get_Y(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to VARIANT that receives the smoothed Y value. Returned
VARIANT will be of type VT_R8.

Return Values

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.7.2 Methods

4.1.7.2.1 INPSmoothing::Update

Call the update method to calculate smoothing based on the new values. If the call to Update
is successful, the properties of the INPSmoothing interface will contain the new values.

HRESULT Update(VARIANT ValX, VARIANT ValY);

Parameters

 ValX

 [in] VARIANT that contains the new X data. VARIANT should be of type VT_R8.

 ValY

 [in] VARIANT that contains the new Y data. VARIANT should be of type VT_R8.

Return Values

Value Meaning

S_OK Method succeeded.

4.1.7.2.2 INPSmoothing::Reset

The reset method resets the smoothing calculations to their initial state.

HRESULT Reset();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

4.1.8 INPCameraFrame

This object contains information about the current camera frame. This interface is a standard
COM enumeration interface containing a list of all objects in the frame.

4.1.8.1 Properties

4.1.8.1.1 INPCameraFrame::get__NewEnum

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

This property returns a copy of the enumerator. The returned object will be an INPObject
interface with the index pointing to the first object in the collection.

HRESULT get__NewEnum(LPUNKNOWN * ppunk);

Parameters

 ppunk

 [out, retval] Pointer to an IUnknown interface.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.8.1.2 INPCameraFrame::get_Count

Returns the number of objects in the collection.

HRESULT get_Count(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to LONG that receives the count.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.8.1.3 INPCameraFrame::get_Id

Returns the ID number associated with this frame. This method is only supported for OptiTrack
FLEX:C120 and V100 cameras.

HRESULT get_Id(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to LONG that receives the ID.

Return Values

Value Meaning

S_OK Method succeeded.

4.1.8.1.4 INPCameraFrame::get_SwitchState

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

Returns the current state of the switches at the time the frame was captured.

HRESULT get_SwitchState(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to LONG that receives the switch state. Switch states are
defined by the NP_SWITCH_STATE enumeration.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.8.1.5 INPCameraFrame::get_TimeStamp

Arrival time of the camera frame into the PC. Data returned is of type DOUBLE.

HRESULT get_TimeStamp(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to Variant that receives the timestamp.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.8.1.6 INPCameraFrame::get_TimeStampFrequency

Indicates the number of ticks per second used for the value returned by get_TimeStamp. Data
returned is of type DOUBLE.

HRESULT get_TimeStampFrequency(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to Variant that receives the timestamp.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.8.1.7 INPCameraFrame::get_IsCorrupt

This method indicates whether the specified frame arrived with corrupted data.

Also see NP_OPTION_SEND_FRAME_MASK which controls whether or not corrupted frames
will trigger callbacks.

HRESULT get_IsCorrupt(VARIANT_BOOL * pVal);

Parameters

 pVal

 [out, retval] Pointer to LONG that receives the result. Value will be TRUE if the
frame contains corrupted data.

Return Values

Value Meaning

S_OK Method succeeded.

4.1.8.1.8 INPCameraFrame::get_IsGreyscale

This method indicates whether the specified frame contains greyscale image data.

HRESULT get_IsGreyscale(VARIANT_BOOL * pVal);

Parameters

 pVal

 [out, retval] Pointer to LONG that receives the result. Value will be TRUE if the
frame contains greyscale image data.

Return Values

Value Meaning

S_OK Method succeeded.

4.1.8.1.9 INPCameraFrame::get_IsEmpty

This method indicates whether the specified frame contains any objects.

HRESULT get_IsEmpty(VARIANT_BOOL * pVal);

Parameters

 pVal

 [out, retval] Pointer to LONG that receives the result. Value will be TRUE if no
objects are present in the frame.

Return Values

Value Meaning

S_OK Method succeeded.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.8.2 Methods

4.1.8.2.1 INPCameraFrame::Item

The Item method returns the corresponding item in the collection. In this case Item will return
an INPObject interface.

HRESULT Item(LONG a_vlIndex, INPObject ** ppObject);

Parameters

 A_vlIndex

 [in] Index of the item to retrieve.

 ppObject

 [out, retval] Pointer that receives an INPObject interface.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.8.2.2 INPCameraFrame::GetObjectData

GetObjectData() provides access to multiple objects in a frame with a single COM call, this can
improve performance for frames with large numbers of objects. Once frame->GetObjectData()
is called, frame->Item() will no longer return valid NPObjects. Making the call a single time will
automatically switch OptiTrack COM into a bulk transfer mode until OptiTrack COM is shut
down.

struct sCameraObject

{

 float X;

 float Y;

 int Width;

 int Height;

 int Area;

 int Rank;

 int Score;

};

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

// Traditional/old object access method

// Pull individual object 2D locations from the INPCameraFrame

for(int i=0; i<m_ObjectCount; i++)

{

 CComPtr<INPObject> object;

 frame->Item(i, &object);

 VARIANT X,Y;

 object->get_X(&X);

 object->get_Y(&Y);

 object.Release();

}

// New Bulk object method

frame->GetObjectData((byte*)m_ObjectTrans, kMax2DObjects*sizeof(sCameraObject),&objectCount);

for(int i=0; i<objectCount; i++)

{

 sCameraObject &object = m_ObjectTrans[i];

}

HRESULT GetObjectData((byte*)Buffer, (long) BufferSize , (long*)
ReturnedObjectCount);

Parameters

 Buffer

 [in] destination buffer which the object data will be copied into

 BufferSize

 [out] size of Buffer

 ReturnedObjectCount

 [in] the number of objects copied into Buffer for the frame

Return Values

Value Meaning

S_OK Method succeeded.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

4.1.8.2.3 INPCameraFrame::Free

The Free method must be called when all processing is complete for this frame. Camera
frames are a limited resource in the system and must be released as soon as possible. All
other methods that depend on a camera frame will fail if the frame is accessed once this
method has been called.

HRESULT Free();

Parameters

 None

Return Values

Value Meaning

S_OK Method succeeded.

4.1.9 INPObject

4.1.9.1 Properties

4.1.9.1.1 INPObject::get_Area

Read-only. Area in pixels of the object. Data returned is of type DOUBLE.

HRESULT get_Area(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to a VARIANT that receives the area of the object.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.9.1.2 INPObject::get_X

Read-only. X position of the object in pixels. Data returned is of type DOUBLE.

HRESULT get_X(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to a VARIANT that receives the x position of the object.

Return Values

Value Meaning

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.9.1.3 INPObject::get_Y

Read-only. Y position of the object in pixels. Data returned is of type DOUBLE.

HRESULT get_Y(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to a VARIANT that receives the y position of the object.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.9.1.4 INPObject::get_Score

Read-only. Overall score of the object. Data returned is of type DOUBLE.

HRESULT get_Score(VARIANT * pVal);

Parameters

 pVal

 [out, retval] Pointer to a VARIANT that receives the score of the object.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.9.1.5 INPObject::get_Rank

Read-only. The rank specifies the ranking of the object in the camera frame. The object with a
rank of 1 is the tracked object.

HRESULT get_Rank(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a LONG that receives the rank of the object.

Return Values

Value Meaning

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.9.1.6 INPObject::get_Width

Read-only. Specifies the width of the bounding rectangle of the object.

HRESULT get_Rank(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a LONG that receives the width.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.9.1.7 INPObject::get_Height

Read-only. Specifies the height of the bounding rectangle of the object.

HRESULT get_Rank(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a LONG that receives the height.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.9.2 Methods

4.1.9.2.1 INPObject::Transform

Applies any transformations specified by the options set for the given camera. Transformations
include camera rotation and mirroring of X and Y axis. If this method is called, the X and Y
positions of the object will change slightly. Normally the origin for object positions is the upper
left corner of the device. X values increase moving right, y values increase moving down.

After transforming the value, the x and y coordinates will be relative to an origin in the middle of
the camera.

HRESULT Transform(INPCamera * pCamera);

Parameters

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

 pCamera

 [in] Pointer to an INPCamera interface that the frame originated.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.10 INPAvi

(INPAvi will remain in the SDK, but support will no longer be provided for it)

The INPAvi interface allows the bitmap images of tracking information to be written to an AVI
file. The compression used for the AVI file is the Microsoft MPEG 4 v2 codec.

The image saved to the AVI file is the same image that appears when calling
INPCamera::DrawFrame. The color of each object in the view can be changed by the standard
NP_OPTION enumeration values.

NOTE: By default the system does not pass empty frames up to client applications. Use the
NP_OPTION_SEND_EMPTY_FRAMES option to receive these frames. If this option is not
set, only frames with visible objects will be written to the AVI file.

4.1.10.1 Properties

4.1.10.1.1 INPAvi::get_FileName

File name to be used when saving the AVI file. The default file name is optitrack.avi. If a full
path is not specified, the file will be located in the current working directory of the process.

HRESULT get_FileName(BSTR * pVal);

Parameters

 pVal

 [out, retval] Pointer to a BSTR that receives the file name.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.10.1.2 INPAvi::put_FileName

Sets the file name of the output AVI.

HRESULT put_FileName(BSTR Val);

Parameters

 Val

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

 [in] VARIANT that contains a BSTR for the file name.

Return Values

Value Meaning

S_OK Method succeeded.

4.1.10.1.3 INPAvi::get_FrameRate

Number of frames per second that will be written to the AVI file. The default is 120.

HRESULT get_FileName(LONG * pVal);

Parameters

 pVal

 [out, retval] Pointer to a LONG that receives the frame rate.

Return Values

Value Meaning

S_OK Method succeeded.

E_POINTER Pointer is invalid.

4.1.10.1.4 INPAvi::put_FrameRate

Sets the frame rate of the AVI file.

HRESULT put_FileName(LONG Val);

Parameters

 Val

 [in] LONG that contains the frame rate.

Return Values

Value Meaning

S_OK Method succeeded.

4.1.10.2 Methods

4.1.10.2.1 INPAvi::Start

Initializes the AVI file for writing. This function must be called before calling AddFrame.

HRESULT Start();

Parameters

 none

Return Values

Value Meaning

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

S_OK Method succeeded.

4.1.10.2.2 INPAvi::Stop

Closes the AVI file when complete.

HRESULT Stop();

Parameters

 none

Return Values

Value Meaning

S_OK Method succeeded.

4.1.10.2.3 INPAvi::AddFrame

Writes a frame to the AVI file.

HRESULT AddFrame(INPCamera * pCamera, INPCameraFrame * pFrame)

Parameters

 pCamera

 [in] Pointer to an INPCamera object that the frame originated.

 pFrame

 [in] Pointer to an INPCameraFrame object. This is the frame that will be written
to the AVI file.

Return Values

Value Meaning

S_OK Method succeeded.

4.1.11 _INPCameraCollectionEvents

4.1.11.1 Methods

4.1.11.1.1 _INPCameraCollectionEvents::DeviceRemoval

This method is called when a device is removed from the system.

void DeviceRemoval(INPCamera * pCamera);

Parameters

 pCamera

 [in] Pointer to an INPCamera object. The camera object is the object that has
been removed from the system.

Return Values

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Interfaces

 None.

4.1.11.1.2 _INPCameraCollectionEvents::DeviceArrival

This method is called when a device is added to the system.

void DeviceArrival(INPCamera * pCamera);

Parameters

 pCamera

 [in] Pointer to an INPCamera object. The camera object is the object that has
been added to the system.

Return Values

 None.

4.1.12 _INPCameraEvents

4.1.12.1 Methods

4.1.12.1.1 _INPCameraEvents::FrameAvailable

This method is called when the camera has captured a frame.

void FrameAvailable(INPCamera * pCamera);

Parameters

 pCamera

 [in] Pointer to an INPCamera object. This is the camera object that captured the
frame. In order to get the most recent frame, call the GetFrame method of INPCamera.

Return Values

 None.

4.1.12.1.2 _INPCameraEvents::SwitchChange

This method is called when the switch state has changed.

void SwitchChange(INPCamera * pCamera, LONG lNewSwitchState);

Parameters

 pCamera

 [in] Pointer to an INPCamera object. This is the camera object that captured the
frame. In order to get the most recent frame, call the GetFrame method of INPCamera.

 lNewSwitchState

 [in] New state of the switch. Switch states are defined by the
NP_SWITCH_STATE enumeration.

Return Values

 None.

NaturalPoint Proprietary

OptiTrackAPI_1.1.037.doc Sample Code

NaturalPoint Proprietary

5 Sample Code

5.1 VBScript

Several VBScript sample files are provided in the SDK. These scripts show how to enumerate
cameras, get information from them and query the data. The following scripts are provided:

camInfoLED.vbs

This script is an example of how to enumerate cameras connected to the system and
display their information. It also shows how to hook up connection points to receive
information about camera removal and arrival. Finally, it shows how to control the LEDs
on the device.

camData.vbs

This script is an example of how to get camera frame data from the device. It builds upon
the camInfoLED script to get notifications when a frame is available.

camSwitch.vbs

This script is shows how to get information about the state of the switches. The script
uses connection points on the camera object to receive notifications.

camVector.vbs

This script is an example of how to calculate the Vector positions. All 6 degrees of
freedom are computed.

camRecord.vbs

This script is an example of how to save the tracking view to an AVI file.

5.2 VB.NET

A sample application written in Visual Basic .NET is provided in the SDK. The application can
control one camera at a time, but is able to switch between any cameras attached to the
system. All options available through the API are accessible through the options dialog off the
main dialog. Connection point callbacks are used for device notification and data availability.

5.3 VC

The C/C++ sample application is available in a Visual C/C++ project. The VC project was
chosen for maximum compatibility as many developers use VC.

This application exercises all components of the OptiTrack API. Cameras can be enumerated,
data gathered, smoothed and Vector positions calculated. The sample will also draw the
camera image. The sample also includes code to enable connection points for callbacks.

	 Architecture
	1.1 Overview
	1.2 Component Model
	1.3 Interface Layout

	2 Functionality
	2.1 npusb.sys
	2.2 cameradll.dll
	2.3 optitrack.dll
	2.4 smartnav.exe
	2.5 trackir.exe

	3 Design Considerations
	3.1 Getting Started
	3.2 Single Dot Tracking
	3.3 Vector Tracking
	3.4 Connection Points
	3.5 Threading Issues
	3.6 Smoothing
	3.7 Camera Commands
	3.8 Camera Frame Object Lifetime
	3.9 Object Coordinates
	3.10 Color Structures
	3.11 VARIANT_BOOL versus BOOL
	3.12 Switch States

	4 Interfaces
	4.1.1 INPCameraCollection
	4.1.1.1 Properties
	4.1.1.1.1 INPCameraCollection::get__NewEnum
	4.1.1.1.2 INPCameraCollection::get_Count
	4.1.1.2 Methods
	4.1.1.2.1 INPCameraCollection::Item
	4.1.1.2.2 INPCameraCollection::Enum
	4.1.1.2.3 INPCameraCollection::Synchronize

	4.1.2 INPCamera
	4.1.2.1 Properties
	4.1.2.1.1 INPCamera::get_SerialNumber
	4.1.2.1.2 INPCamera::get_Model
	4.1.2.1.3 INPCamera::get_Revision
	4.1.2.1.4 INPCamera::get_Width
	4.1.2.1.5 INPCamera::get_Height
	4.1.2.1.6 INPCamera::get_FrameRate

	4.1.2.2 Methods
	4.1.2.2.1 INPCamera::Open
	4.1.2.2.2 INPCamera::Close
	4.1.2.2.3 INPCamera::Start
	4.1.2.2.4 INPCamera::Stop
	4.1.2.2.5 INPCamera::SetLED
	4.1.2.2.6 INPCamera::SetVideo
	4.1.2.2.7 INPCamera::GetFrame
	4.1.2.2.8 INPCamera::DrawFrame
	4.1.2.2.9 INPCamera::ResetTrackedObject
	4.1.2.2.10 INPCamera::GetOption
	4.1.2.2.11 INPCamera::SetOption
	4.1.2.2.12 INPCamera::GetFrameImage

	4.1.3 INPVector
	4.1.3.1 Properties
	4.1.3.1.1 INPVector::get_Yaw
	4.1.3.1.2 INPVector::get_Pitch
	4.1.3.1.3 INPVector::get_Roll
	4.1.3.1.4 INPVector::get_X
	4.1.3.1.5 INPVector::get_Y
	4.1.3.1.6 INPVector::get_Z

	4.1.3.2 Methods
	4.1.3.2.1 INPVector::Update
	4.1.3.2.2 INPVector::Reset

	4.1.4 INPVector2
	4.1.4.1 Properties
	4.1.4.1.1 INPVector2::get_dist01
	4.1.4.1.2 INPVector2::put_dist01
	4.1.4.1.3 INPVector2::get_dist02
	4.1.4.1.4 INPVector2::put_dist02
	4.1.4.1.5 INPVector2::get_dist12
	4.1.4.1.6 INPVector2::put_dist12
	4.1.4.1.7 INPVector2::get_distol
	4.1.4.1.8 INPVector2::put_distol
	4.1.4.1.9 INPVector2::get_Tracking

	4.1.4.2 Methods
	4.1.4.2.1 INPVector2::GetPoint

	4.1.5 INPVector3
	4.1.5.1.1 INPVector3:: get_imagerPixelWidth
	4.1.5.1.2 INPVector3:: put_imagerPixelWidth
	4.1.5.1.3 INPVector3:: get_imagerPixelHeight
	4.1.5.1.4 INPVector3:: put_imagerPixelHeight
	4.1.5.1.5 INPVector3:: get_imagerMMWidth
	4.1.5.1.6 INPVector3:: put_imagerMMWidth
	4.1.5.1.7 INPVector3:: get_imagerMMHeight
	4.1.5.1.8 INPVector3:: put_imagerMMHeight
	4.1.5.1.9 INPVector3:: get_imagerMMFocalLength
	4.1.5.1.10 INPVector3:: put_imagerMMFocalLength

	4.1.6 INPPoint
	4.1.6.1 Properties
	4.1.6.1.1 INPPoint::get_X
	4.1.6.1.2 INPPoint::get_Y
	4.1.6.1.3 INPPoint::get_Z

	4.1.7 INPSmoothing
	4.1.7.1 Properties
	4.1.7.1.1 INPSmoothing::get_Amount
	4.1.7.1.2 INPSmoothing::put_Amount
	4.1.7.1.3 INPSmoothing::get_X
	4.1.7.1.4 INPSmoothing::get_Y

	4.1.7.2 Methods
	4.1.7.2.1 INPSmoothing::Update
	4.1.7.2.2 INPSmoothing::Reset

	4.1.8 INPCameraFrame
	4.1.8.1 Properties
	4.1.8.1.1 INPCameraFrame::get__NewEnum
	4.1.8.1.2 INPCameraFrame::get_Count
	4.1.8.1.3 INPCameraFrame::get_Id
	4.1.8.1.4 INPCameraFrame::get_SwitchState
	4.1.8.1.5 INPCameraFrame::get_TimeStamp
	4.1.8.1.6 INPCameraFrame::get_TimeStampFrequency
	4.1.8.1.7 INPCameraFrame::get_IsCorrupt
	4.1.8.1.8 INPCameraFrame::get_IsGreyscale
	4.1.8.1.9 INPCameraFrame::get_IsEmpty

	4.1.8.2 Methods
	4.1.8.2.1 INPCameraFrame::Item
	4.1.8.2.2 INPCameraFrame::GetObjectData
	4.1.8.2.3 INPCameraFrame::Free

	4.1.9 INPObject
	4.1.9.1 Properties
	4.1.9.1.1 INPObject::get_Area
	4.1.9.1.2 INPObject::get_X
	4.1.9.1.3 INPObject::get_Y
	4.1.9.1.4 INPObject::get_Score
	4.1.9.1.5 INPObject::get_Rank
	4.1.9.1.6 INPObject::get_Width
	4.1.9.1.7 INPObject::get_Height

	4.1.9.2 Methods
	4.1.9.2.1 INPObject::Transform

	4.1.10 INPAvi
	4.1.10.1 Properties
	4.1.10.1.1 INPAvi::get_FileName
	4.1.10.1.2 INPAvi::put_FileName
	4.1.10.1.3 INPAvi::get_FrameRate
	4.1.10.1.4 INPAvi::put_FrameRate

	4.1.10.2 Methods
	4.1.10.2.1 INPAvi::Start
	4.1.10.2.2 INPAvi::Stop
	4.1.10.2.3 INPAvi::AddFrame

	4.1.11 _INPCameraCollectionEvents
	4.1.11.1 Methods
	4.1.11.1.1 _INPCameraCollectionEvents::DeviceRemoval
	4.1.11.1.2 _INPCameraCollectionEvents::DeviceArrival

	4.1.12 _INPCameraEvents
	4.1.12.1 Methods
	4.1.12.1.1 _INPCameraEvents::FrameAvailable
	4.1.12.1.2 _INPCameraEvents::SwitchChange

	5 Sample Code
	5.1 VBScript
	5.2 VB.NET
	5.3 VC

